Counting

Peter Giblin,
October 2013
University of Liverpool Maths Club pjgiblin@liv.ac.uk

First I want to explain the principle of inclusionexclusion

The Liverpool fans circle

The maths fans Suppose in a group of young people, 20 support Liverpool, 10 think maths is cool and 5 both support Liverpool and think that maths is cool.
$\underline{\mathbf{L}} \cup \underline{\mathbf{M}}=$ the whole group
$L=20, M=10, L \cap M=5$

How many people in the group?
$L U M=L+M-(L \cap M)=20+10-5=25$

So L+M is corrected by subtracting LnM

How does this work with three overlapping sets? If we just add up $\mathrm{A}+\mathrm{B}+\mathrm{C}$ how do we correct this to get the number in $A \cup B U C$?

These are the number of times someone is counted by just adding up $\mathrm{A}+\mathrm{B}+\mathrm{C}$
$A \cup B \cup C=A+B+C-(A \cap B)-(B \cap C)-(A \cap C)+(A \cap B \cap C)$

Example:
These are the actual numbers of people in the various regions

$A \cup B \cup C=A+B+C-(A \cap B)-(B \cap C)-(A \cap C)+(A \cap B \cap C)$

$$
\begin{aligned}
& 30+40+50-15-10-10+5 \\
& =90
\end{aligned}
$$

$$
A \cup B \cup C=A+B+C-(A \cap B)-(B \cap C)-(A \cap C)+(A \cap B \cap C)
$$

The total number in all the sets $(A \cup B \cup C)$ is:
the sum of the numbers in the sets taken 1 at a time
minus
the sum of the numbers in the intersections taken two at a time
plus
the sum of the numbers in the intersections taken three at a time
The general formula involving k sets is called the principle of inclusion-exclusion

Problems.....for later; they are on the handout

$$
\begin{aligned}
A \cup B \cup C= & A+B+C-(A \cap B)-(B \cap C)-(A \cap C)+(A \cap B \cap C) \\
& 30+40+50-15-10-10+x
\end{aligned}
$$

What possible values could x have?

$$
\begin{aligned}
A \cup B \cup C= & A+B+C-(A \cap B)-(B \cap C)-(A \cap C)+(A \cap B \cap C) \\
& 17+30+40-15-10-10+x
\end{aligned}
$$

What possible values could x have?
$A \cup B \cup C=A+B+C-(A \cap B)-(B \cap C)-(A \cap C)+(A \cap B \cap C)$ Is this possible?

$$
30+40+50-20-15-20+x
$$

Here's a different problem, which will turn out to be the same! Consider "maps" between two sets.

Define \underline{n} to be the numbers $1,2,3, \ldots, \mathrm{n}$ And $\underline{\mathbf{k}}$ to be the numbers $1,2,3, \ldots, k$

A "map" from $\underline{\mathbf{n}}$ to $\underline{\mathbf{k}}$ means a rule f which takes each number in the source \underline{n} to a definite number in the target $\underline{\mathbf{k}}$. So there is one arrow from each number on the left, hitting some number on the right
f can take 1 to 1,2 or 3 and 2 to 1,2 or 3 . How many possibilities are there altogether?

maps $f: \underline{\mathbf{2}} \rightarrow \underline{\mathbf{3}}$

Every number in the source must

have an arrow going to a definite place in the target.

Total is $3^{2}=9$ What is the general result for $\underline{\mathbf{n}}$ and $\underline{\mathbf{k}}$?
Answer: number of maps $\boldsymbol{f}: \underline{\mathbf{n}} \rightarrow \underline{\mathbf{k}}$ is k^{n}

A map is called injective if different x and y always give different values $f(x)$ and $f(y)$, so two arrows from the source cannot end up at the same number in the target.

So you never get
for an injective map

How many injective maps are there between $\underline{\mathbf{2}}$ and $\underline{\mathbf{3}}$?

All but three of these are injective, so 6 out of 9

How many injective maps are there between $\underline{\mathbf{n}}$ and $\underline{\mathbf{k}}$?
Maybe you can see that we need $n \leq k$ for this to work.
There are k places where 1 can go,
k-1 places where 2 can go [can't go to same place as 1] $k-2$ places where 3 can go [can't go to same place as 1,2]
$k-n+1$ places where n can go
So $k(k-1)(k-2) \ldots(k-n+1)$ possibilities altogether:

$$
\frac{k!}{(k-n)!}
$$

E.g. $n=2, k=4$ gives 12 injective maps $\underline{\mathbf{2}} \rightarrow \underline{\mathbf{4}}$ (all except 4 of the 16 maps $\underline{\mathbf{2}} \rightarrow \underline{\mathbf{4}}$)

A map is called surjective if every number in the target is hit by at least one arrow.

For $f: \underline{\mathbf{n}} \rightarrow \underline{\mathbf{k}}$ this requires $n \geq k$
How many surjective maps are there from $\underline{\mathbf{3}}$ to $\underline{\mathbf{2}}$?

Maybe you can spot the answer for maps from $\underline{\mathbf{4}}$ to $\underline{\mathbf{2}}$ or indeed for maps $\underline{\mathbf{n}}$ to $\underline{\mathbf{2}}$: how many are surjective?

But however could we count the surjective maps $\underline{3} \rightarrow \underline{3}$?
There are 27 maps altogether. Do we have to list them all and check the ones which are surjective?

Here's a hint:
Let \mathbf{A} be all the maps which do not hit the number 1 Let \mathbf{B} be all the maps which do not hit the number 2 Let \mathbf{C} be all the maps which do not hit the number 3

How many maps in \mathbf{A} ? in \mathbf{B} ? in \mathbf{C} ? $\quad 2^{3}=8$ in each How many maps in AnB? How many maps in $\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}$?
$1^{3}=1$, also $B \cap C$ etc.
0 How many maps in $\mathbf{A U B U C}$? [These are the not surjective maps] Remember

$$
A \cup B \cup C=A+B+C-(A \cap B)-(B \cap C)-(A \cap C)+(A \cap B \cap C)
$$

$$
8+8+8-1-1-1+0=21 \text { not surjective }
$$

$$
\text { so } 27-21 \text { = } 6 \text { surjective }
$$

We can apply the same idea to, say, maps $\underline{4}$ to $\underline{\mathbf{3}}$
Let \mathbf{A} be all the maps which do not hit the number 1 Let \mathbf{B} be all the maps which do not hit the number 2 Let \mathbf{C} be all the maps which do not hit the number 3

How many maps in \mathbf{A} ? in \mathbf{B} ? in \mathbf{C} ?
How many maps in $\mathbf{A} \cap \mathbf{B}$?
How many maps in $\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}$?
How many maps in $\mathbf{A U B U C}$? [These are the not surjective maps]

$$
\begin{aligned}
A \cup B \cup C= & A+B+C-(A \cap B)-(B \cap C)-(A \cap C)+(A \cap B \cap C) \\
& 2^{4}+2^{4}+2^{4}-1-1-1+0=45
\end{aligned}
$$

out of the total of $3^{4}=81$ maps are not surjective so $81-45=36$ maps are surjective.

General result, using the general inclusion-exclusion principle: number of surjective maps $\underline{\boldsymbol{n}}$ to $\underline{\mathbf{k}}$ is (when $n \geq k$)
$k^{n}-\binom{k}{1}(k-1)^{n}+\binom{k}{2}(k-2)^{n}-\ldots$
where the sum in continued for k terms (the next one is zero)
If $n=k$ this must equal the number of injective maps (can you see why this is??), namely $k!$, which is a bit surprising....
e.g. $n=k=4$ gives
$4^{4}-4\left(3^{4}\right)+6\left(2^{4}\right)-4\left(1^{4}\right)=256-324+96-4=24=4!$

Try looking up inclusion-exclusion principle on Google. It is just a generalization of
$A \cup B \cup C=A+B+C-(A \cap B)-(B \cap C)-(A \cap C)+(A \cap B \cap C)$
to any number of sets $\underline{\mathbf{A}}_{1}, \underline{\mathbf{A}}_{2}, \ldots \underline{\mathbf{A}}_{k}$
For four sets $\underline{\mathbf{A}}, \underline{\mathbf{B}}, \underline{\mathbf{C}}, \underline{\mathbf{D}}$ the formula is
$A \cup B \cup C \cup D=A+B+C+D-(A \cap B)-(A \cap C)-(A \cap D)$
$-(B \cap C)-(B \cap D)-(C \cap D)+(B \cap C \cap D)+(A \cap C \cap D)$
$+(A \cap B \cap D)+(A \cap B \cap C)-(A \cap B \cap C \cap D)$
(It's harder to draw a Venn diagram to illustrate this!!
There need to be $2^{4}-1=15$ regions)

